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COMMENT 

Upper critical dimension of Kauffman cellular automata 
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$ HLRZ, c/o KFA Julich, PO Box 1913, 5170 Julich 1, Federal Republic of Germany 
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Abstract. Random Boolean networks on nearest-neighbour d-dimensional lattices are 
argued to belong to the universality class of directed percolation with quenched disorder 
in d + 1 dimensions. Hansen’s computer simulations for d = 4 are thus interpreted as being 
at the upper critical dimension. 

In cellular automata, each lattice site carries a ‘spin’ which may point either up or down. 
The orientation of a spin at time t + 1 is determined completely by the orientation of 
its neighbour spins at time t .  On a lattice with K such neighbours one has N = 2K 
neighbour configurations and thus 2N different rules which the spins might obey. In 
the Kauffman model [l], each site selects randomly at the beginning which of these 2N 
rules it wants to obey. One may bias this random selection by assuming that each site, 
for each of the N neighbour configurations separately, selects with probability p the 
rule giving an up spin, and with probability 1 - p  the rule selecting a down spin. In the 
‘quenched’ Kauffman model this selection is made, once and for all, at the beginning, 
whereas in the ‘annealed’ Kauffman model this selection of rules is made again and 
again at every time step [2]. Since then simply at each time step the spin points up 
with probability p and down with probability 1 - p ,  the annealed Kauffman model on 
a d-dimensional lattice is related to directed percolation [3] in d + 1 dimensions, the 
time being the additional dimension. 

This relation arises if one investigates the Hamming distance between two different 
configurations studied on the same lattice with the same set of rules [ 2 ] .  This distance is 
the number of spins differing in a site-by-site comparison of the two configurations. If 
initially the two configurations differ by a single spin only, one may call this Hamming 
distance the ‘damage’ spreading through the system as a consequence of this single 
spin flip. For the annealed Kauffman model the damage spreads along the clusters of 
a directed percolation lattice [4], where bonds are present randomly with probability 
2p(l - p ) .  We want to postulate a similar relation for the quenched Kauffman model. 

We start with a completely random spin distribution: spin up at site i with 
probability i. In the quenched Kauffman model each site i gives, at the next time step, 
an up spin with a probability pi depending on the particular rule it has selected for 
itself. If the neighbour configuration would remain random then the spin of that given 
site would point up with this same time-independent probability. Although the local 
configurations are not really random one can still define a probability for a spin to be 
up by averaging over all the possible initial configurations; and although this value will 
not be completely time independent on the time average there will be sites i that have 
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a probability pl distinctly above or below average. In this sense one can define pf such 
that different sites i and k have different but time-independent probabilities pf and P k  

for pointing up, If we average over all sites i, the average probability is ( p , )  = m, but 
for each site it can be different. For example, one particular site could have selected 
the rule ‘always up’ and thus has p i  = 1 ; i t  actually has selected that extreme rule with 
probability p N .  

We now simulate the spreading of damage by looking at two lattices simultaneously, 
employing the same rules for two lattices that initially differ only on very few sites in 
their spin orientation; then the damage spreads from one spin to a neighbour with 
some finite probability, if the two neighbourhoods are not identical. We call this 
probability p :  for site i (meant in the same sense as above) and its average over all 
sites the damage-spreading probability p ‘ .  If the neighbourhood configurations would 
be random, p :  would be 2pl(l - pf) and would be fixed in time, depending only on 
the rule selected by that site initially. The time can be interpreted as an additional 
spatial dimension. This situation thus corresponds to quenched disordered directed 
percolation in d + 1 dimensions [5 ,  61 with probability p’ .  

If the damage reaches a site for the first time, the a priori probability for this 
damage to be transferred is p‘ .  If the damage reaches a point twice, then with a 
probability that we call 1/N’ it will be subjected to the same behaviour as before. We 
call N‘ the effective number of possible neighbour configurations. One could estimate 
N’ by summing over many ( M )  initial configurations and measure for each site how 
often the various possible neighbour configurations actually occur. Those appearing 
at least M / N  times are counted as effective. N’ can be much less than the total 
number of neighbour configurations, N = 2 K ,  and depends on p ;  for example N‘ = 1 
at p = 0. This dependence could cause a phase transition as a function of l/N’. N’ 
is also diminished by the fact that the neighbour configurations are correlated and 
not random. Thus 1/N’ can be considered as a measure for the quenched disorder. 
In terms of the calculations of [6] it corresponds to the square of SO, where SO is the 
average dispersion of quenched percolation probabilities at different sites. We must, 
however, be very careful in applying this approach to systems with large disorder. 
Usually, disorder manifests itself as an additional effective attraction in the theory. The 
renormalisation group calculation shows [6] that the fixed point which determines the 
universality class of disordered directed percolation is very close to being unstable. So 
it may happen that at a certain degree of disorder there is no stable solution at all. For 
deterministic cellular automata this effect will lead to short limit cycles of the system. 
Essentially, strong disorder from this point of view is enhanced in low-dimensional 
lattices with low coordination numbers K ;  indeed in the honeycomb lattice, K = 3, no 
chaotic phase with damage spreading over the whole lattice was found [ 8 ] .  

In our case the behaviour of neighbours is correlated. Small limit cycles are possible 
for certain regions or for the whole lattice. Nevertheless the total concentration of up 
spins in the Kauffman model is known to be close to the probability p that a rule 
gives the value spin up. The correlations for the neighbour configurations can, at least 
partly, be taken into account by our distinction between N and N‘. We conjecture that 
this difference takes into account the main effect of these correlations; the larger the 
number of neighbours is, the less important we expect the correlations to be. 

Similarly, for isotropic percolation one may look at correlated instead of random 
percolation, where (as in the king model or lattice gas) spins tend to be parallel, i.e. 
occupied sites attract each other. A correlated percolation model has different thresh- 
olds than random percolation but is believed to belong to the same universality class 
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(same fractal dimensions, etc) as random percolation as long as no phase separation 
sets in. Similarly we expect damage spreading in the quenched Kauffman model not to 
be identical to quenched disordered directed percolation but merely to have the same 
universality class. The percolation thresholds may be different. (Thus our similarity 
to percolation is different from that of [7] where the damage-spreading thresholds 
were found to agree with percolation thresholds involving diodes, triodes, tetrodes and 
pentodes.) 

According to [6], the critical exponents of quenched disordered directed percolation 
differ from the normal directed percolation; for example, the time fractal dimension 
vll/vi was found to be 2 + 4 2  instead of 2 + 614, and also the mass fractal dimension 
d - B/vl  = 2 - ~ / 2  is different; E = 4 - d in both cases. 

We do not know of numerical studies of quenched disordered directed percolation 
to compare with the known [8] fractal dimensions of the Kauffman models, except the 
simulations of Noest for two dimensions [5] which gave different exponents. However, 
d = 4 should be the upper critical dimension [6] such that for larger d the exponents 
stay at their values for d = 4. For d = 4 one therefore expects logarithmic correction 
factors. In Hansen's numerical study 191 of the four-dimensional Kauffman model the 
lattice size could not be varied by orders of magnitude; thus his Monte Carlo exponents 
(1.8 for mass and 2.1 for time fractal dimension) can be effective values influenced by 
the logarithmic corrections: if a quantity A varies as LD(logL)' with length L, then 
the effective fractal dimension is df = d(1og A)/d(log L)  = D + x/( logL).  

Instead of this possibility, the present problem allows also an alternative explana- 
tion : in four dimensions the logarithmic corrections to the initial coupling constants 
given in the renormalisation group equations are extremely small because of the nu- 
merical factor K4 = S4/ (21~)~  = 1/32rc2 = 1/316 which enters into the perturbation 
equation of the coupling constant uR = u[l -uln(. . .) +. . .] with G I  = go' Kq, G2 = si K4, 

where U stands for GI and G2. In numerical simulations a logarithm will hardly be 
larger than 1/G or 316. However, it causes approximately stable values of the longitu- 
dinal and perpendicular Fisher exponents q l l  and of [6] in a very large intermediate 
region : 

The unrenormalised value of go is of order unity, so e N - ' / 2 ,  and they are practically 
unchanged from scale to scale. This effect causes effective exponents 

very slightly different from mean-field theory; however, 7 = 1. For mass and time 
fractal dimensions we get 2 -GI  / 16 + G2 and d - p / v i  , respectively. This intermediate 
regime can from any practical point of view be regarded as asymptotic. It is, of 
course, non-universal with effective exponents depending on the lattice and disorder. 
In principle, the interesting possibility exists that disorder can be made large enough 
(or branching constant small enough) to change the sign of q and the sign of the 
corrections to the mean-field exponents. Indeed the numerical values 1.8 and 2.1 differ 
from the theoretical expectation 2 in the same direction as the E expansion predicts. 



1718 S P Obukhoc and D Staufer 

It must be noted that in deterministic systems obeying randomly fixed rules there 
can appear effects which cannot exist at all in probabilistic models. For example, 
we can have, with a probability decaying exponentially with N ' ,  two sites which are 
influenced only by each other and are themselves independent of the behaviour of the 
other neighbours, though they may influence them. If the initial perturbation changes 
the behaviour of these two points it will lead to permanent damage in the system. 
Then, even for p < p c ,  percolation in the sense of a cluster surviving for infinite times 
is now guaranteed but no spatial spreading of the damage occurs. From the point 
of view of percolation theory this perturbation has another dimensionality (linear 
instead of a point perturbation) and this can produce different values of the damage 
exponents. This explains the absence of a change in the critical behaviour found in [lo] 
for point and linear perturbation in two dimensions; similar three-dimensional [9, 111 
simulations would be helpful. Also the effects of non-universality at d = 4 for both the 
Kauffman and quenched disordered percolation should be checked. So one must be 
very cautious in the application of our analogy. 
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